

软龙格图像采集卡

软件开发使用手册

版本:1.1

更新记录:

版本	日期	内容
1.0	2018-07-12	初版。
1.1	2019-08-02	修正部分错误

目录

1. 图	像采集卡演示软件概括	4
1.1	主要特性	4
1. 2	软件架构	4
1.3	系统要求	4
1.4	软件使用说明	4
1.	4.1 图像采集卡驱动安装	4
1.	4.2 软件使用	6
2. SD	K 整合范例流程	
2. 1	获取图像采集卡 ID	
2. 2	图像采集卡初始化	
2.3	Sensor 点亮	16
2.4	Sensor 关闭	17
2.5	开短路测试	17
2. 6	工作及待机电流测试	

1. 图像采集卡演示软件概括

1.1 主要特性

- ① 高速图像显示
- ② MIPI DPHY & CPHY 全兼容
- DPHY 支持 1/2/4 lane 解码
 - CPHY 支持 1/2/3 Trio 解码(依据实际硬件是否支持)
- ③ 支持 12C 或者 SP1
- ④ Sensor 点亮函数接口简单, 通俗易懂, 执行一条语句即可点亮

Sensor

- ⑤ Sensor 初始化通过 INI 文件配置
- ⑥ 兼容多个版本采集卡 R2C R3X R5X R6U
- 1.2 软件架构

基于 Visual Studio 编译环境, MFC 框架, 简洁易懂, 让开发人员快速 熟悉 API 及 Sensor 点亮流程, SDK C 封形式。

- 1.3 系统要求
 - 操作系统: 32-bit/64-bit Windows 操作系统
 - Windows 7
 - Windows 8
 - Windows 81
 - Windows 10

- Windows Server 2016 处理器: Intel i5 四核及以上版本 内存双通道: 超过 2GB USB3.0 及以上

- 1.4 软件使用说明
 - 1.4.1 图像采集卡 USB3.0 驱动安装

Windows 7/8/81/10 驱动文件下载地址: https://pan.baidu.com/s/1dBwd5ueuCT7y5wqH9iSfQg 密码: 7zqs)

- A. 电脑与图像采集卡连接,并打开采集卡电源,进入"计算机"—
 "管理"—"设备管理器"—"其他设备"。
- B. 右键选择"005"(有些电脑提示 FX3), 在弹出的对话框选择"更新驱动程序软件"(如图 1)。
- C. 选择"浏览计算机以查找驱动程序软件"再依据电脑系统版本选择与之匹配的驱动程序路径(如图2图3)。
- D. 点击"下一步"直到驱动安装完成如图 4 所示。
- E. 安装完成之后, 会在通用串行控制器显示"Cypress FX3 USB StreamerExample Device"即表示安装成功。

图 1

图 4

1.4.2 软件使用

A. 进入 Demo 开发包的 bin_demo\Release 目录,选择 RolongoSDK. exe 若启动程序后提示"装置无法开启,请检查 ID 是否正确……"则需绑定当前连 接的采集卡序列号,若提示"装置开启成功"(如图 7),则无需绑定;

绑定流程如下:点击Get Platform list->在 Device Serial Number 下拉框选择序列号(如果是连接多个工装,即拷贝多个程序目录,打开 RolongoSDK.exe 选择不同的序列号绑定)->Set Platform ID->弹出的对话框 (如图 6)选择"确定"->程序重启,再次打开应用程序。

Camera Chan	nel 1	Sensor_fps/Upload_fps	Platform FW Version:Unknow 0.0.0.0
OpenDevice LoadParameter StartPreview StopPreview CloseDevice	I2C(Hex) Slave: 0x 6C Register: 0x 0202 Data: 0x 7 Type: 0x1608 Camera Channel: C1	Write	1
IIC Multi Write atform Parameter Device Serial numb	I2C Multi Read C	ISTest CurrentTest	SaveRAW Get Platform List Set Platform ID

图 5

			Platform FW Version:Unknow	
Camera Channel	1	Sensor_tps/Upload_tps	0.0.0.0	
Operation	I2C(Hex)			
OpenDevice	cl	16:02:41	装置无法开启,请检查ID是否正确	,或者重新获用 18_1.19Gbps.in
LoadParameter R	olongoSDK			
StartPreview	因当前配置文件中	D与装置获取ID不一致,请重启	程序牛效已支持多装置	
StopPreview				
			确定	÷.
CloseDevice				
CloseDevice				
CloseDevice Function	2C Multi Read	OSTest CurrentTest	SaveRAW	
CloseDevice Function I2C Multi Write I Matform Parameter	2C Multi Read	OSTest CurrentTest	SaveRAW	

B. 配置程序加载的点亮参数路径,找到 SensorConfgure.cfg,设置路径(如图 8),如果接的双通道测试盒(R5X,R6U)且点亮双摄模组,需设置CameraCH1(对应测试盒 MIPI 通道 1)以及 CameraCH2(对应测试盒 MIPI 通道 2),若接单通道测试盒(R3X,R2C),只需设置 CameraCH1,或双通道测试盒点亮其中某一颗模组,依据摄像头实际接入的 MIPI 通道设置。(若还未设置 C 步骤的Sensor点亮参数,此步先跳过,先设置 C 步骤的点亮参数,再回到此步骤设置)

SensorConfgure.cfg - 记事本

文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)

[LoadingPath] CameraCH1="./Sensor_IMX318_1.19Gbps.ini" CameraCH2="./Sensor_S5K5E8.ini"

[DeviceInfo]

ID=2122B840.F1709000.79608854.006CB400

图 8

C. 配置点亮参数(若不懂模组点亮参数,可联系我司技术人员获取)1>. 设置电压

测试盒提供 7 组可编程电源 AVDD DVDD D0VDD 10VDD POW AF VFUSE (R2C, R3X, R5X, R6U 支持,可调范围及精度参阅对应测试盒型号规格书),2 组固 定电源 5V (R3X R2C R5X 支持) 12V (R5X 支持)。10VDD 测试盒内部 10 电平,比 如 MCLK, REST, PWDN, SDA, SCL, 10-Out 都是跟随 10VDD 电压,可以设置成跟 D0VDD 一样电平;

2>.12C设置
HW_12C_Speed: 12C速率单位KHz, 1KHz~1MHz 可调
HW_12C_IntervalTime: 12C指令间隔时间
HW_12C_CommProtocal: 12C或者SPI(仅R2C, R5X支持SPI)通讯协议
选择
HW_CheckDeviceAck: 12C通信时侦测是否有ACK回馈, true: 侦测,
false: 不侦测
HW_SPICSLow: CS 电平(仅R2C, R5X支持)。 true:CS 电平为低;
false: CS 电平为高, 当通讯协议选择SPI才需设置
HW_SPILittleEndian: 设置读写SPI时,低位在前还是高位在前。
true:低位在前; false: 高位在前, 当通讯协议选择SPI才需设置(仅R2C, R5X支持)
3>. MCLK, PWDN, REST 设置

HW_Sensor_MCLK: Sensor 时钟频率, 单位 MHz, 0~136MHz 可调

HW_RESET_Active: 设置 Sensor 上电时序电平, true 高电平, false 低 电平

HW_PWDN_Active: 设置 Sensor 上电时序电平, true 高电平, false 低 电平

HW DVP VS Active, HW_DVP_HS_Active: DVP VS HS 同步信号设置,

true 高电平有效, false, 低电平有效 (DVP 图像传输接口才需设置, 非 DVP 可以不设置);

4>. Sensor 上电时序设置及其他

HW_PowerupSequence: 依据具体Sensor品牌选择,以下参数可配置

 $//0V=0\times00$, SONY=0x10, SANSUNG=0x20, HYN1X=0x30, APT1NA=0x40, ST=0x50, TOSH1BA=0x60, GCORE1NC=0x70, SUPERP1X=0x80, DONGBU=0x90, CUSTOM=0xFE, OTH ER=0xFF

HW SensorName: Sensor 型号, 依据具体型号设置, 也可不设置

HW_ENGINEER_Mode: 工程人员调试图像是否有输出可以设置成 true, 产 线正常生产需设置成 false

HW_UseDDR3:设置成 true

5>. CPHY 参数设置 【使用 R6U CPHY Sensor 才需设置】

HW_CPHY_Mode: //0x0: SENSOR 输出参考时钟; 0x1:SENSOR 不输出参考 时钟(9 线模式),目前常用设置 0x01

HW_CPHY_Rate: MIPI 数据传输速率,单位 Gsps/Trio

] Sensor_IMX318_1.19Gbps.ini - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
HW_Voltage_AF = 0 //0~3.8 HW_Voltage_VFuse = 0 //0~10 HW_OutPut_5V = 0 HW_OutPut_12V = 0
HW_I2C_Speed = 400 HW_I2C_IntervalTime = 200 HW_I2C_CommProtocal = 0 //0:I2C 1: SPI HW_I2C_Slave = 0x20 HW_I2C_Mode = 0x1608 HW_CheckDeviceAck=false HW_SPICSLow = true I2Cig T HW_SPILittleEndian = true
HW_Sensor_MCLK = 24 //如果设定参数为 true 或者 false 后面不能加备注 // false:低电平 true:高电平 HW_RESET_Active = true HW_PWDN_Active = true HW_DVP_VS_Active = false MCLK, PWDN,REST PIN设置 HW_DVP_HS_Active = false
HW_PowerpSequence = 0x10 // 0x00: OV 0x10:SONY 0x20:Samsung 0x30: Hynix 0x40:Aptina 0x50:ST 0x60: Toshiba 0x70:Gcoreinc 0x80:Superpix 0x90:Dongbu //"rdb_imx318_5488x4112_1115.55_24_cphy_0x20" HW_SensorName = "imx318" HW_ENGINEER_Mode = false 上电时序及其 使设置 HW_UseDDR3 = true
HW_CPHY_Mode=0x01 //0x0: SENSOR输出参考时钟; 0x1:SENSOR不输出参考时钟(9线模式) HW_CPHY_Rate=1.199450 CPHY参数设置

6>. 设置图像参数 Image Width: 设置图像宽,单位像素 Image Height: 设置图像高,单位像素 Image DataFormat: 设置图像 Bayer 格式及 Pixel bit 数,如下参数可配 置 //0x01 Baylor8_BGGR ,0x02 Baylor8_RGGB ,0x03 Baylor8_GRBG, 0x04 Baylor8 GBRG //0x11 Baylor10_BGGR ,0x12 Baylor10_RGGB, 0x13 Baylor10 GRBG , 0x14 Baylor10 GBRG //Ox41 Baylor12_BGGR, 0x52 Baylor12_RGGB, 0x53 Baylor12_GRBG, 0x54 Baylor12 GBRG //0x51 Baylor14_BGGR ,0x52 Baylor14_RGGB, 0x53 Baylor14_GRBG , 0x54 Baylor14_GBRG //0x21 HisYUV8 422 YUYV, 0x22 HisYUV8 422 UYVY, 0x23 HisYUV8_422_YVYU, 0x24 HisYUV8_422_VYUY Image Interface: 设置图像传输格式,如下参数可配置(举例手机摄像 头常用格式) //0x00:Parallel DVP , 0x01: 11ane DPHY MIP1 , 0x02: 21ane DPHY 0x04: 41ane DPHY MIPI, 0x0F, DPHY, 0x10 LVDS, 0x60 CPHY 其他 MIPI. 图像格式可与我司技术人员联系 Image LaneNumber: 设置C-PHY/DPHY或者LVDS 数据Lane数 Image DummyLeft: 设置图像左边的 Dummy Line Image_DummyRight: 设置图像右边的 Dummy Line Image DummyTop: 设置图像上边的 Dummy Line Image DummyBottom:设置图像下边的 Dummy Line (在切割图像设置参数应遵循如下原则 Sensor 实际输出宽= Image Width+ Image DummyLeft+ Image DummyRight; Sensor 实际输出高= Image_Height+ Image_DummyTop + Image_DummyBottom) Image OutputXSVS: 设置解码 LVDS 时是否输出 XS, VS 信号 Image_LVDS_XHS: 设置解码 LVDS 的 HS 同步信号 Image LVDS XVS: 设置解码 LVDS 的 VS 同步信号 Image_LVDSAlign: 设置解码 LVDS 的对齐方式 DVP LineFormat: DVP 数据线设置,如下参数可设置 1: 采 7:0 2: 采 15:0 3: 采 9:0 4: 采 11:0 // 0: 采9:2 5: 采13:0 设置 DVP 采集同步信号相移,如下参数可设置 DVP PhaseShift:

// 0:不相移; 1:90度; 2:180度; 3:270度

```
[Image_Sensor]
Image_Width =5488
Image_Height = 4112
// 0x01 Baylor8_BGGR 0x02 Baylor8_RGGB 0x03 Baylor8_GRBG 0x04 Baylor8_GBRG
// 0x01 Baylor10_BGGR 0x12 Baylor10_RGGB 0x13 Baylor10_GRBG 0x14 Baylor10_GBRG
// 0x11 Baylor12_BGGR 0x42 Baylor12_RGGB 0x43 Baylor12_GRBG 0x44 Baylor12_GBRG
// 0x51 Baylor14_BGGR 0x52 Baylor14_RGGB 0x53 Baylor14_GRBG 0x54 Baylor14_GBRG
// 0x51 Baylor14_BGGR 0x52 Baylor14_RGGB 0x53 Baylor14_GRBG 0x54 Baylor14_GBRG
Image_Interface = 0x60 //0:Parallel DVP 1: 1lane MIPI 2: 2lane MIPI 4: 4lane MIPI 0x10 LVDS 0x60 :_CPH
Image_LaneNumber =3
Image_DummyLeft=0
Image_DummyRight=0
```

```
Image_DummyBottom=0
//LVDS Interface use
Image_OutputXSVS=false
Image_LVDS_XHS=576
Image_LVDS_XVS=3125
Image_LVDSAlign=0
DVP_LineFormat=1 //0: 采9:2 1: 采7:0 2: 采15:0
DVP_PhaseShift=0 // 0:不相移; 1: 90度; 2: 180度; 3: 270度
```

7> 设置 Sensor 初始化指令集

Image_DummyTop=0

将 Sensor 初始化寄存器配置参数按照如下格式设置在[Register_Sensor] 与[End]之间

Sensor 从机地址,寄存器地址,寄存器值, 120 模式;

12C 模式表示寄存器地址位数与寄存器值位数,如 0x0808 即表示寄存器地 址位数 8bit,寄存器值位数 8bit,还有 0x1608,0x0816,0x1616,0x1632,0x1664 等等

```
[Register_Sensor]
0x6c,0x0103,0x01,0x1608
0x6c,0x3f3c,0x0002,0x1616
0x6c,0x3fe0,0x0001,0x1616
0x6c,0x0100,0x00,0x1608
0x6c,0x3fe0,0x0000,0x1616
0x6c,0x3042,0x1004,0x1616
0x6c,0x30d2,0x0120,0x1616
0x6c,0x30d4,0x0000,0x1616
0x6c,0x3090,0x0000,0x1616
0x6c,0x30fc,0x0060,0x1616
0x6c,0x30fe,0x0060,0x1616
0x6c,0x31e0,0x0781,0x1616
0x6c,0x3180,0x9434,0x1616
0x6c,0x317c,0xeff4,0x1616
0x6c,0x30ee,0x613e,0x1616
0x6c,0x3f2c,0x4428,0x1616
0x6c,0x3d00,0x0446,0x1616
0x6c,0x3d02,0x4c66,0x1616
[END]
```

D> Sensor 点亮出图

若当前连接的是双通道采集卡(R5X、R6U),可以选择单独通道1图像出图 (Camera Channel1),或者通道2出图(Camera Channel2),也可同时出图;若 当前连接的是单通道采集卡,默认选择通道1出图;

因在上述步骤 A 已完成绑定工装及程序重启动作,图示④按钮 OpenDevice 无需点击;

若在程序启动前已完成步骤 C Sensor 点亮参数配置,图示①按钮 LoadParameter 无需点击,直接点击图示②StartPreview 按钮,若程序启动之 后,有修改步骤 C Sensor 点亮参数,需在点击开始出图按钮之前,先点击图示 ①LoadParameter 按钮;

停止出图点击图示③按钮 StopPreview;

开始出图执行成功之后,会在图示⑥标示位置显示 Sensor 出图帧率,及上 传帧率 (如图 10);

Select Image Channel Camera Channel 1 Camera Channel 2 Sensor_fps/Uploa Sensor_fps/Uploa	Id_fps Platform FW Version: 3009_R6U Id_fps 70827840.F1709000.1BA0885C.0048ED00_R6
Operation I2C(Hex) log OpenDevice Slave: 0x 6C Write LoadParamete Register: 0x 0202 10 StartPreview Data: 0x Read 10 StopPreview Type: 0x1608 CloseDevice Camera Channel: C1	:36:46_装置开启成功 :36:46 通道1-Camera点高参数路径./Sensor_3L8.ini :36:46 通道2-Camera点高参数路径./Sensor_S5K2P7.ini
Function I2C Multi Read OSTest CurrentTe Platform Parameter Device Serial number: 70827840.F1709000.1BA0885C.0048ED00_R6 Grabber Upload Delay(Clock): 30 (Range: 30~200) 5	est SaveRAW Get Platform List Set Platform ID SET

图 9

Select Image Channel Fig. 2 F Camera Channel 1 14.870/14.870 Sensor_fox/Upload_fox Platform FW Version: 3009_R6U Camera Channel 2 Sensor_fox/Upload_fox 70827940.F1709000.1BA0885C.0048ED00_R6
Operation 12C(Hex) Operation Save: 0x Save: 0x 0 South Setting Save: 0x 0 South Setting Save: 0x 0 Start Freedom 0 0 Type: 0x1608 ▼ 0 CoseDenvice Camera Channel: C1 ▼ ■ Function 12C Multi Write 12C Multi Read 0STest CurrentTest SaveRAW Platform Data Set Platform Dial Platform Parameter Device Serial number: 2002/04.9 / 1709000.118A0885C.0048ED00_P6 ▼ Get Platform List Set Platform Dial Grabber Upload Delay(Clock): 30 (Range: 30~200) SET Set Platform Dial

图 10

E> 开短路测试(OS Test R3X、R5X、R6U 支持)

点击 OSTest 按钮进入开短路测试配置页面如图 11;

支持正向对地测试,负向对电源测试,两两短路测试,若需电阻测试,及开路测试可与我司技术人员联系,此演示软件不做展示;

若连接的双通道测试盒,用户依据模组连接的通道选择 Camera1 或者 Camera2 如图示④,若需双摄模组全 PIN 脚开短路测试,可与我司技术人员联系; 测试步骤:

1.选择正向对地(或者负向对电源,两两短路测试)图示⑤标示

11. 选择图像通道 Camera1 或者 Camera2 图示④标示

Ⅲ. 选择需测试 PIN 脚图示①标示

VI.选择参考地或者参考电源,正向对地测试参考地一般选择 DGND0,负向对电源测试参考电源一般选择 DOVDD 图示②标示

V. 点击图示⑥标示

测试结果会在图示③标示区域显示测试值及结果

0	penShoi	rtTest									x	.0.6 St	upported	l Image
Γ	No	Description	Test	6	ND		Spec min(mV)	Spec max(mV)	Result(mV)	Status(nas				
	1	AF			0	-	200	800	434 447	00000000				
	1 2			DGND0	2		200	800	250 711	pass		0/14.8	70	
	3			DGND0	~	-	200	800	299.062	nass			-	senso
	4	DVDD		DGND0			200	800	257.963	pass				Senso
	5	IO-I0		DGND0			200	800	3286.388	fail				
	6	10-00		DGND0		-	200	800	3288.000	fail				
	7	IO-01		DGND0			200	800	3287, 194	fail				
	8	IO-02		DGND0			200	800	3287.194	fail		60	:	
	9	LAN0-N		DGND0		-	200	800	366.755	pass	Ξ	DX 1		Wri
	10	LAN0-P	2	DGND0			200	800	366.755	pass			0.0	
	11	LAN1-N	2	DGND0			200	800	369.978	pass)x 02	02	
	12	LAN1-P	2	DGND0			200	800	369.978	pass				_
	13	LAN2-N	2	DGND0			200	800	369.978	pass		Dx		Rei
	14	LAN2-P	2	DGND0			200	800	369.172	pass				
	15	LAN3-N	2	DGND0		*	200	800	371.590	pass		0x	1608	-
	16	LAN3-P	2	DGND0		*	200	800	369.978	pass		1		-
	17	MCLK	2	DGND0			200	800	417.524	pass				7
	18	MCN	2	DGND0			200	800	369.978	pass	_	nnei: ju	.1	1
	19	MCP	2	DGND0			200	800	368.366	pass				
	20	OTP		AGND0		*	200	800						-
	21	POW		AGND0			200	800			-			
	22	PWDN		AGND0		*	200	800				ad	OSTes	t
	I • 📖													
	🖬 கஞ்ச	atabalist 🔲 色成	っけ由い原知り	ಟ್ 🗆 ಕ	ET C X	ന്ന്								
	ι• πιο))		UX JHEAR AN	µu ⊫ p>		291124								
	MIDI Into	rfaca 📈 Camor		amora 2		n 🔿 🖽						F17090	00.1BA08	385C.004
	Para Inte			ameraz	- PATING	P主匹		Test 🙆	OK	Cancel			_	
L													(Rang	je:30~2

F> 电流测试

点击进入"CurrentTest"即可测试工作电流及待机电流; 工作电流量测步骤如下:

- 1. 模组在点亮状态,选择图示标示①
- 2. 选择要测量的 MIPI 通道,如果是双通道测试盒,可以选择 Camera1 或者 Camera2,若是单通道测试盒,默认勾选 Camera1,图示标示②
- 3. 勾选要测量的电源 PIN 脚,图示标示③
- 4. 点击 CurrentMeasure 按钮,图示标示④

Camera1		
		Current Measure
Select Image Came Came Operation OpenD	SDK Demo Ver: 2.0.0.6 ge Channel era Channel 1 15.080/15 era Channel 2 I2C(Hex) slave: 0x	Image: Avdd: 29.970 Image: Dvdd: 106.280 Image: Dovdd: 0.000 Image: Dovdd: 0.000 Image: AF: 0.000 Image: VPP: 0.000 Image: Powe: 0.000
LoadPare	Register: 0x	StandbyCurrentMeasure (unit:uA)
StartPre	Data: 0x	WorkCurrentMeasure(unit:m) DelayTime: 5000 ms
StopPre	Type:	Camera1 Camera2
	evice Camera Channel:	CurrentMeasure OK Cancel
I2C Mul	ti Write I2C Multi Read	OSTest CurrentTest SaveRAW

图 12

待机电流量测步骤如下:

1模组在关闭状态,选择图示标示①

2选择要测量的 MIPI 通道,如果是双通道测试盒,可以选择 Camera1 或者 Camera2,若是单通道测试盒,默认勾选 Camera1,图示标示② 3 勾选 Sensor 进入 Standby 条件及测量的电源 PIN 脚,图示标示③及④ 4 点击 Current Measure 按钮,图示标示⑤

Current Measure
Image: Avdd: 4.390 Image: Avdd: 36566.238 Image: Dvdd: 1.600 Image: AF: 0.000 Image: AF: 0.000
WorkCurrentMeasure(unit::A) DelayTime: 5000 ms
Curren Sisure OK Cancel

图 13

G> 保存 RAW 图

步骤如下:

模组在点亮状态,点击图示标示①按钮,即再程序目录生成一张 RAW 图,如图 示标示②

图 14

2. SDK 整合范例流程

2.1 获取图像采集卡 ID

HisFX3EnumDev
Ļ
HisFX3EnumFree

*API 接口参数说明,查阅 HisFX3Platform.h 获取当前 PC 连接的采集卡数量及序列号,考虑到一台电脑接多个采 集卡情况,建议用户上层测试软件做一个单独参数配置窗口,执行上 述流程,让用户选择其中一个 ID,保存至配置文件,此 ID 用于采集 开初始化及与测试软件的绑定,当测试软件再次启动直接加载此 ID 初始化采集开;

2.2 图像采集卡初始化

*API 接口参数说明,查阅 HisFX3Platform.h HisFX3OpenDevice第二个形参赋值2.1章节获取的ID;第一形参,若一个测 试软件(进程)绑定唯一采集卡,此形参设置为0,若一个测试软件(进 程)绑定多个采集卡,此形参依据采集卡数量逐次+1;

2.3 Sensor 点亮

*API 接口参数说明, 查阅 HisFX3Platform. h

上述 Display 非采集卡接口,从采集卡传输上来的 RAW 图,如果要显示在软件,先做插值算法,将 RAW 转 BMP, BMP 绘制在窗口;

*注意 ①*HisFX3GrabFrame* 倒数第三个新参,设置为零,接口传出 Image Buffer 为 1Pixel 2BYTE RAW10/RAW12/RAW14 格式, Low High Low High 排列 顺序,若设置为 HisBaylor_Compact 为 MIPI RAW 格式,以 MIPI RAW10 而言 Image Buffer 为 4Pixel 5 BYTE RAW10/RAW12/RAW14 格式与 MIPI 格式一致; ②HisFX3GrabFrame 同时也支持其他非 RAW 格式,插值后的 RGB(第三个形参 设置为 HisRGB_RGB24) 或者 BGR 格式(第三个形参设置为 HisRGB_BGR24)

2.4 Sensor 关闭

*API 接口参数说明, 查阅 HisFX3Platform.h 上述 Display 及 Stop 非采集卡接口

2.5 开短路测试

正向对地测试:

HisFX3OSPositiveTest

负向对电源测试:

HisFX3OSNegtiveTest

两两短路测试

HisFX3OSShortTest

电阻测试

HisFX3OSOhmTest

开路测试

HisFX3OSOpenTest

*API 接口参数说明, 查阅 HisFX3Platform. h

2.6 工作及待机电流测试

HisFX3MeasureCurrent

*API 接口参数说明, 查阅 HisFX3Platform. h